L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
- Raphaëlle Demeyer, Jérôme Margueron. Comment des pédagogies alternatives peuvent aider à la réussite des étudiants de physique du 1 er cycle universitaire. Reflets de la Physique, 2021, 69, pp.34-38. ⟨10.1051/refdp/202169034⟩. ⟨in2p3-03450405⟩
- H. Rabus, W.B. Li, C. Villagrasa, J. Schuemann, P.A. Hepperle, et al.. Intercomparison of Monte Carlo calculated dose enhancement ratios for gold nanoparticles irradiated by X-rays: Assessing the uncertainty and correct methodology for extended beams. Physica Medica European Journal of Medical Physics, 2021, 84, pp.241-253. ⟨10.1016/j.ejmp.2021.03.005⟩. ⟨hal-03257934⟩
- Camille Camen. Recherche d'un second boson de Higgs de masse mH < 110 GeV dans le canal di-photon au sein de l’expérience CMS au LHC. Physique des accélérateurs [physics.acc-ph]. Université de Lyon, 2021. Français. ⟨NNT : 2021LYSE1034⟩. ⟨tel-03635680⟩
- Floriane Poignant, Hela Charfi, Chen-Hui Chan, Elise Dumont, David Loffreda, et al.. Monte Carlo simulation of free radical production under keV photon irradiation of gold nanoparticle aqueous solution. Part II: Local primary chemical boost. Radiation Physics and Chemistry, 2021, 179, pp.109161. ⟨10.1016/j.radphyschem.2020.109161⟩. ⟨hal-03029595⟩
- M.-L. Gallin-Martel, S. Curtoni, S. Marcatili, L. Abbassi, A. Bes, et al.. X-ray beam induced current analysis of CVD diamond detectors in the perspective of a beam tagging hodoscope development for hadrontherapy on-line monitoring. Diamond and Related Materials, 2021, 112, pp.108236. ⟨10.1016/j.diamond.2020.108236⟩. ⟨hal-03150914⟩
- C. Hadjidakis, D. Kikoła, J.P. Lansberg, L. Massacrier, M.G. Echevarria, et al.. A fixed-target programme at the LHC: Physics case and projected performances for heavy-ion, hadron, spin and astroparticle studies. Physics Reports, 2021, 911, pp.1-83. ⟨10.1016/j.physrep.2021.01.002⟩. ⟨hal-01846818⟩
- Armen Tumasyan, Wolfgang Adam, Janik Walter Andrejkovic, Thomas Bergauer, Suman Chatterjee, et al.. Search for Long-Lived Particles Decaying in the CMS End Cap Muon Detectors in Proton-Proton Collisions at
=13 TeV. Phys.Rev.Lett., 2021, 127 (26), pp.261804. ⟨10.1103/PhysRevLett.127.261804⟩. ⟨hal-03312916⟩
- Wafa Bouleftour, Benoite Mery, Elise Rowinski, Charlene Rivier, Elisabeth Daguenet, et al.. Cardio-Oncology Preclinical Models: A Comprehensive Review. Anticancer Research, 2021, 41 (11), pp.5355-5364. ⟨10.21873/anticanres.15348⟩. ⟨hal-03463909⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Thomas Bergauer, Marko Dragicevic, et al.. Performance of the CMS muon trigger system in proton-proton collisions at
13 TeV. Journal of Instrumentation, 2021, 16, pp.P07001. ⟨10.1088/1748-0221/16/07/P07001⟩. ⟨hal-03157137⟩
- Pablo Lemos, Niall Jeffrey, Lorne Whiteway, Ofer Lahav, Noam I. Libeskind, et al.. Sum of the masses of the Milky Way and M31: A likelihood-free inference approach. Physical Review D, 2021, 103 (2), pp.023009. ⟨10.1103/PhysRevD.103.023009⟩. ⟨hal-02999468⟩