L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.

Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.

Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.

Les activités se décomposent en trois axes de recherche:

L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.

L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.

L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.

Publications HAL


2021

Journal articles

Oreste Allegrini, J. P. Cachemiche, C.P.C. Caplan, Bruno Carlus, Xiushan Chen, et al.. Characterization of a beam-tagging hodoscope for hadrontherapy monitoring. Journal of Instrumentation, IOP Publishing, In press. ⟨hal-03103624⟩

https://hal.archives-ouvertes.fr/hal-03103624/file/Allegrini.pdf

Hamid Ladjal, Michael Beuve, Philippe Giraud, Shariat Behzad. Towards Non-invasive Lung Tumor Tracking Based on Patient-Specific Model of Respiratory System. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, In press, ⟨10.1109/TBME.2021.3053321⟩. ⟨hal-03113681⟩

2020

Journal articles

Nils Krah, Catherine Therese Quiñones, Jean-Michel Létang, Simon Rit. Scattering proton CT. Physics in Medicine and Biology, IOP Publishing, 2020, 65 (22), pp.225015. ⟨10.1088/1361-6560/abbd18⟩. ⟨hal-02959263⟩

https://hal.archives-ouvertes.fr/hal-02959263/file/scatteringpct_accepted.pdf

Riad Ladjohounlou, Safa Louati, Alexandra Lauret, Arnaud Gauthier, Dominique Ardail, et al.. Ceramide-Enriched Membrane Domains Contribute to Targeted and Nontargeted Effects of Radiation through Modulation of PI3K/AKT Signaling in HNSCC Cells. International Journal of Molecular Sciences, MDPI, 2020, 21 (19), pp.7200. ⟨10.3390/ijms21197200⟩. ⟨hal-03001763⟩

Floriane Poignant, Hela Charfi, Chen-Hui Chan, Elise Dumont, David Loffreda, et al.. Monte Carlo simulation of free radical production under keV photon irradiation of gold nanoparticle aqueous solution. Part I: Global primary chemical boost. Radiation Physics and Chemistry, Elsevier, 2020, 172, pp.108790. ⟨10.1016/j.radphyschem.2020.108790⟩. ⟨hal-02498384⟩

https://hal.archives-ouvertes.fr/hal-02498384/file/RPC-172-2020-108790-preprint%20%281%29.pdf

Hamid Ladjal, Matthieu Giroux, Michael Beuve, Philippe Giraud, Behzad Shariat. Patient-specific physiological model of the respiratory system based on inverse finite element analysis: a comparative study. Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis, 2020, Computer Methods in Biomechanics and Biomedical Engineering, 22 (sup1), pp.S45-S47. ⟨10.1080/10255842.2020.1713473⟩. ⟨hal-02466130⟩

Feriel Khellaf, Nils Krah, Jean Michel Létang, Simon Rit. 2D directional ramp filter. Physics in Medicine and Biology, IOP Publishing, 2020, 65 (8), pp.08NT01. ⟨10.1088/1361-6560/ab7875⟩. ⟨hal-02486620⟩

https://hal.archives-ouvertes.fr/hal-02486620/file/PMB_DR.pdf

S. Simonet, C. Rodriguez-Lafrasse, D. Béal, S. Gerbaud, C. Malesys, et al.. Gadolinium-Based Nanoparticles Can Overcome the Radioresistance of Head and Neck Squamous Cell Carcinoma Through the Induction of Autophagy. Journal of Biomedical Nanotechnology, American Scientific Publishers, 2020, 16 (1), pp.111-124. ⟨10.1166/jbn.2020.2871⟩. ⟨hal-02476855⟩

W. B. Li, A. Belchior, M. Beuve, Y. Z. Chen, S. Di Maria, et al.. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Physica Medica, Elsevier, 2020, 69, pp.147-163. ⟨10.1016/j.ejmp.2019.12.011⟩. ⟨hal-02452613⟩

https://hal.archives-ouvertes.fr/hal-02452613/file/PIIS1120179719305320.pdf

M. Fontana, J.-L. Ley, D. Dauvergne, Nicolas Freud, J. Krimmer, et al.. Monitoring ion beam therapy with a Compton Camera: simulation studies of the clinical feasibility. IEEE Trans.Rad.Plasma Med.Sci., 2020, 4 (2), pp.218-232. ⟨10.1109/TRPMS.2019.2933985⟩. ⟨hal-02301075⟩

Chen-Hui Chan, Floriane Poignant, Michael Beuve, Elise Dumont, David Loffreda. Effect of the Ligand Binding Strength on the Morphology of Functionalized Gold Nanoparticles. Journal of Physical Chemistry Letters, American Chemical Society, 2020, pp.2717-2723. ⟨10.1021/acs.jpclett.0c00300⟩. ⟨hal-02519412⟩

https://hal.archives-ouvertes.fr/hal-02519412/file/jz-2020-003008.R1_Proof_hi.pdf

Floriane Poignant, Caterina Monini, Étienne Testa, Michaël Beuve. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation. Medical Physics, American Association of Physicists in Medicine, In press, ⟨10.1002/mp.14576⟩. ⟨hal-03001810⟩

Denis Dauvergne, Oreste Allegrini, Cairo Caplan, Xiushan Chen, Sébastien Curtoni, et al.. On the role of single particle irradiation and fast timing for efficient online-control in particle therapy. Frontiers in Physics, Frontiers, 2020, 8, pp.567215. ⟨10.3389/fphy.2020.567215⟩. ⟨hal-02939215⟩

https://hal.archives-ouvertes.fr/hal-02939215/file/Dauvergne_fphy-08-567215.pdf

Feriel Khellaf, Nils Krah, Jean-Michel Létang, Charles-Antoine Collins-Fekete, Simon Rit. A comparison of direct reconstruction algorithms in proton computed tomography. Physics in Medicine and Biology, IOP Publishing, 2020, 65 (10), pp.105010. ⟨10.1088/1361-6560/ab7d53⟩. ⟨hal-02502179⟩

https://hal.archives-ouvertes.fr/hal-02502179/file/PMB_comparison.pdf

Samuel Gessen, Elisabeth Daguenet, Mathilde Gras, Safa Louati, Wafa Bouleftour, et al.. How to improve clinical research in a department of radiation oncology. Bull.Cancer, 2020, 107 (10), pp.991-998. ⟨10.1016/j.bulcan.2020.06.007⟩. ⟨hal-03107897⟩

E. Guillaume, E. Daguenet, C. Lahmamssi, M. Ben Mrad, O. Jmour, et al.. Facteurs de risque d’asthénie en cours de la radiothérapie des cancers du sein et de la prostate. Cancer/Radiothérapie, 2020, 24 (1), pp.15-20. ⟨10.1016/j.canrad.2019.09.005⟩. ⟨hal-02571531⟩

Guillaume Thiam, Florence Charlieux, Pierre Mignon, Franck Rabilloud, Hassan Abdoul-Carime. Decomposition of Carbon Tetrachloride on Gold Surfaces. J.Phys.Chem.C, 2020, 124 (38), pp.20874-20880. ⟨10.1021/acs.jpcc.0c04492⟩. ⟨hal-02955776⟩

Elisabeth Daguenet, Safa Louati, Anne-Sophie Wozny, Nicolas Vial, Mathilde Gras, et al.. Radiation-induced bystander and abscopal effects: important lessons from preclinical models. British journal of cancer, 2020, 123 (3), pp.339-348. ⟨10.1038/s41416-020-0942-3⟩. ⟨hal-02927729⟩

A. Etxebeste, D. Dauvergne, M. Fontana, J.M. Létang, G. Llosá, et al.. CCMod: a GATE module for Compton camera imaging simulation. Phys.Med.Biol., 2020, 65 (5), pp.055004. ⟨10.1088/1361-6560/ab6529⟩. ⟨hal-02497878⟩

https://hal.archives-ouvertes.fr/hal-02497878/file/etxebeste2020%20ccmod.pdf

Nicolas Magné, Renaud Sabatier, Marie Wislez, Thierry André, Manuel Rodrigues, et al.. Florilège des actualités oncologiques internationales en 2019. Bull.Cancer, 2020, 107 (2), pp.148-156. ⟨10.1016/j.bulcan.2020.01.010⟩. ⟨hal-02518020⟩