L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Measurement of the top quark mass in the all-jets final state at
13 TeV and combination with the lepton+jets channel. Eur.Phys.J.C, 2019, 79 (4), pp.313. ⟨10.1140/epjc/s10052-019-6788-2⟩. ⟨hal-01982957⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for
production in the
decay channel with leptonic
decays in proton-proton collisions at
TeV. JHEP, 2019, 03, pp.026. ⟨10.1007/JHEP03(2019)026⟩. ⟨hal-01774097⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two
leptons and two jets in proton-proton collisions at
13 TeV. JHEP, 2019, 03, pp.170. ⟨10.1007/JHEP03(2019)170⟩. ⟨hal-01937639⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at
13 TeV. JHEP, 2019, 08, pp.150. ⟨10.1007/JHEP08(2019)150⟩. ⟨hal-02160622⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. Search for the production of W
W
W
events at
13 TeV. Phys.Rev.D, 2019, 100 (1), pp.012004. ⟨10.1103/PhysRevD.100.012004⟩. ⟨hal-02144348⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at
13 TeV. JHEP, 2019, 01, pp.154. ⟨10.1007/JHEP01(2019)154⟩. ⟨hal-01965352⟩
- N. Baillot d'Etivaux, Sebastien Guillot, Jérôme Margueron, Natalie Webb, Márcio Catelan, et al.. New constraints on the nuclear equation of state from the thermal emission of neutron stars in quiescent low-mass X-ray binaries. The Astrophysical Journal, 2019, 887 (1), pp.48. ⟨10.3847/1538-4357/ab4f6c⟩. ⟨hal-02144167⟩
- R. Graziani, H.M. Courtois, G Lavaux, Y. Hoffman, R.B. Tully, et al.. The peculiar velocity field up to
by forward-modelling Cosmicflows-3 data. Monthly Notices of the Royal Astronomical Society, 2019, 488 (4), pp.5438-5451. ⟨10.1093/mnras/stz078⟩. ⟨hal-01990691⟩
- Christoph Charles. Abelian 2
1D Loop Quantum Gravity Coupled to a Scalar Field. Gen.Rel.Grav., 2019, 51 (3), pp.48. ⟨10.1007/s10714-019-2532-3⟩. ⟨hal-01871705⟩
- M. Rigault, J.D. Neill, N. Blagorodnova, A. Dugas, M. Feeney, et al.. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astronomy & Astrophysics - A&A, 2019, 627, pp.A115. ⟨10.1051/0004-6361/201935344⟩. ⟨hal-02268432⟩