L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at
13 TeV. Phys.Lett.B, 2019, 793, pp.520-551. ⟨10.1016/j.physletb.2019.04.025⟩. ⟨hal-01886179⟩
- Carine Babusiaux, Maria Bergemann, Adam J. Burgasser, Sara Ellison, Daryl Haggard, et al.. The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition. [Research Report] MSE Science Team. 2019. ⟨hal-02112639⟩
- Shreyasi Acharya, Fernando Torales - Acosta, Dagmar Adamova, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at
=5.44TeV. Physics Letters B, 2019, 790, pp.35-48. ⟨10.1016/j.physletb.2018.12.048⟩. ⟨hal-01801857⟩
- Shreyasi Acharya, Fernando Torales - Acosta, Dagmar Adamova, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Direct photon production at low transverse momentum in proton-proton collisions at
and 8 TeV. Phys.Rev.C, 2019, 99 (2), pp.024912. ⟨10.1103/PhysRevC.99.024912⟩. ⟨hal-01768126⟩
- Xabier Cid Vidal, Monica d'Onofrio, Patrick J Fox, Riccardo Torre, Keith A Ulmer, et al.. Report from Working Group 3 : Beyond the Standard Model Physics at the HL-LHC and HE-LHC. [Research Report] CERN-2019-007, CERN. 2019, pp.585-865. ⟨hal-01975140⟩
- J. Dudouet, A. Lemasson, G. Maquart, F. Nowacki, D. Verney, et al.. Excitations of the magic
neutron-core revealed in
Ga. Physical Review C, 2019, 100 (1), pp.011301. ⟨10.1103/PhysRevC.100.011301⟩. ⟨hal-02188091⟩
- Shreyasi Acharya, Fernando Torales - Acosta, Dagmar Adamova, Souvik Priyam Adhya, Alexander Adler, et al..
production in Pb-Pb collisions at
TeV. Phys.Lett.B, 2019, 793, pp.212-223. ⟨10.1016/j.physletb.2019.04.046⟩. ⟨hal-01897170⟩
- M. Martini, A. de Pace, K. Bennaceur. Spurious finite-size instabilities with Gogny-type interactions. Eur.Phys.J.A, 2019, 55 (9), pp.150. ⟨10.1140/epja/i2019-12838-7⟩. ⟨hal-01823286⟩
- S. Pandeti, L. Feketeová, T.J. Reddy, H. Abdoul-Carime, B. Farizon, et al.. Binding preference of nitroimidazolic radiosensitizers to nucleobases and nucleosides probed by electrospray ionization mass spectrometry and density functional theory. The Journal of Chemical Physics, 2019, 150 (1), pp.014302. ⟨10.1063/1.5062604⟩. ⟨hal-01991287⟩
- A. Kerbizi, X. Artru, Z. Belghobsi, A. Martin. Simplified recursive
model for the fragmentation of polarized quarks. Physical Review D, 2019, 100 (1), pp.014003. ⟨10.1103/PhysRevD.100.014003⟩. ⟨hal-02073501⟩