L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.

Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.

Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.

Les activités se décomposent en trois axes de recherche:

L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.

L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.

L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.


8786 documents

  • Jonathan Chardin, Grégoire Uhlrich, Dominique Aubert, Nicolas Deparis, Nicolas Gillet, et al.. A deep learning model to emulate simulations of cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2019, 490 (1), pp.1055-1065. ⟨10.1093/mnras/stz2605⟩. ⟨hal-02148238⟩
  • Shreyasi Acharya, Fernando Torales - Acosta, Dagmar Adamova, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. \Upsilon suppression at forward rapidity in Pb-Pb collisions at \sqrt{s_{\rm NN}} = 5.02 TeV. Physics Letters B, 2019, 790, pp.89-101. ⟨10.1016/j.physletb.2018.11.067⟩. ⟨hal-01801861⟩
  • Shreyasi Acharya, Fernando Torales - Acosta, Dagmar Adamova, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at \sqrt {s_{NN}}= 13TeV. Physics Letters B, 2019, 788, pp.505-518. ⟨10.1016/j.physletb.2018.11.009⟩. ⟨hal-01801865⟩
  • W. Ryssens, M. Bender, K. Bennaceur, P.-H. Heenen, J. Meyer. Impact of the surface energy coefficient on the deformation properties of atomic nuclei as predicted by Skyrme energy density functionals. Phys.Rev.C, 2019, 99 (4), pp.044315. ⟨10.1103/PhysRevC.99.044315⟩. ⟨hal-01885860⟩
  • Justin H. Robinson, Misty C. Bentz, Megan C. Johnson, Hélène M. Courtois, Benjamin Ou-Yang. H i Spectroscopy of Reverberation-mapped Active Galactic Nuclei. The Astrophysical Journal, 2019, 880 (2), pp.68. ⟨10.3847/1538-4357/ab29f9⟩. ⟨hal-02447923⟩
  • B. Liu, D. Liu, Q. Shen, T. Zhang, G. Garillot, et al.. Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods. JINST, 2019, 14 (10), pp.P10034. ⟨10.1088/1748-0221/14/10/P10034⟩. ⟨hal-02393086⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Performance of missing transverse momentum reconstruction in proton-proton collisions at \sqrt{s} = 13 TeV using the CMS detector. Journal of Instrumentation, 2019, 14 (07), pp.P07004. ⟨10.1088/1748-0221/14/07/P07004⟩. ⟨hal-02080718⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in pp collisions at \sqrt{s} = 8\,\text {TeV}. European Physical Journal C: Particles and Fields, 2019, 79 (11), pp.969. ⟨10.1140/epjc/s10052-019-7451-7⟩. ⟨hal-02277872⟩
  • D.A. Noreña, J.C. Muñoz-Cuartas, L.F. Quiroga, N. Libeskind. Substructures in Minor Mergers' Tidal Streams. Rev.Mex.Astron.Astrofis., 2019, 55, pp.273-288. ⟨10.22201/ia.01851101p.2019.55.02.14⟩. ⟨hal-02431435⟩
  • Robin Terrisse, Dimitrios Tsimpis. Consistent truncation with dilatino condensation on nearly Kähler and Calabi-Yau manifolds. Journal of High Energy Physics, 2019, 02, pp.088. ⟨10.1007/JHEP02(2019)088⟩. ⟨hal-01909241⟩