L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for new particles decaying to a jet and an emerging jet. JHEP, 2019, 02, pp.179. ⟨10.1007/JHEP02(2019)179⟩. ⟨hal-01914590⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. Search for long-lived particles using delayed photons in proton-proton collisions at
13 TeV. Phys.Rev.D, 2019, 100 (11), pp.112003. ⟨10.1103/PhysRevD.100.112003⟩. ⟨hal-02317356⟩
- M. Antonello, A. Belov, G. Bonomi, R.S. Brusa, M. Caccia, et al.. Efficient
positronium production by stimulated decay from the
level. Phys.Rev.A, 2019, 100 (6), pp.063414. ⟨10.1103/PhysRevA.100.063414⟩. ⟨hal-02166467⟩
- E. Verstraelen, A. Teigelhöfer, W. Ryssens, F. Ames, A. Barzakh, et al.. Search for octupole-deformed actinium isotopes using resonance ionization spectroscopy. Phys.Rev.C, 2019, 100 (4), pp.044321. ⟨10.1103/PhysRevC.100.044321⟩. ⟨hal-02394734⟩
- A. Kerbizi, X. Artru, Z. Belghobsi, A. Martin. Simplified recursive
model for the fragmentation of polarized quarks. Physical Review D, 2019, 100 (1), pp.014003. ⟨10.1103/PhysRevD.100.014003⟩. ⟨hal-02073501⟩
- L. Kaya, A. Vogt, P. Reiter, M. Siciliano, N. Shimizu, et al.. Isomer spectroscopy in
Ba and high-spin structure of
Ba. Phys.Rev.C, 2019, 100 (2), pp.024323. ⟨10.1103/PhysRevC.100.024323⟩. ⟨hal-02296195⟩
- Yves Le Gonidec, Marina Rosas-Carbajal, Jean de Bremond d'Ars, B. Carlus, J.-C Ianigro, et al.. Abrupt changes of hydrothermal activity in a lava dome detected by combined seismic and muon monitoring. Scientific Reports, 2019, 9 (1), pp.3079. ⟨10.1038/s41598-019-39606-3⟩. ⟨hal-01945011⟩
- R. Arnaldi, K. Banicz, K. Borer, J. Castor, B. Chaurand, et al.. Nuclear dependence of light neutral meson production in p-A collisions at 400 GeV with NA60. European Physical Journal C: Particles and Fields, 2019, 79 (5), pp.443. ⟨10.1140/epjc/s10052-019-6848-7⟩. ⟨hal-02154290⟩
- Thomas Carreau, Francesca Gulminelli, Jérôme Margueron. General predictions for the neutron star crustal moment of inertia. Phys.Rev.C, 2019, 100 (5), pp.055803. ⟨10.1103/PhysRevC.100.055803⟩. ⟨hal-01897180⟩
- M. Martini, A. de Pace, K. Bennaceur. Spurious finite-size instabilities with Gogny-type interactions. The European physical journal. A, Hadrons and Nuclei, 2019, 55 (9), pp.150. ⟨10.1140/epja/i2019-12838-7⟩. ⟨hal-01823286⟩