L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
- Mario Alcocer-Ávila, Caterina Monini, Micaela Cunha, Étienne Testa, Michaël Beuve. Cell survival prediction in hadrontherapy with the NanOx biophysical model. Front.in Phys., 2022, 10, pp.1011063. ⟨10.3389/fphy.2022.1011063⟩. ⟨hal-04939916⟩
- Enrique Muñoz, A. Etxebeste, Denis Dauvergne, Jean Michel Létang, David Sarrut, et al.. Imaging of polychromatic sources through Compton spectral reconstruction. Physics in Medicine and Biology, 2022, 67 (19), pp.195017. ⟨10.1088/1361-6560/ac92b9⟩. ⟨hal-03808491⟩
- M.E. Galassi, V.B. Tessaro, B. Gervais, M. Beuve. Theoretical multiple-ionization cross sections of Ne-like molecules by light-ion impact: H2O. Physical Review A, 2022, 106 (1), pp.012823. ⟨10.1103/PhysRevA.106.012823⟩. ⟨hal-03777875⟩
- Yasmine Ali, Lucas Auzel, Caterina Monini, Kateryna Kriachok, Jean Michel Létang, et al.. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams. Benchmarking of GEANT4‐DNA and LPCHEM codes. Medical Physics, 2022, 49 (5), pp.3457-3469. ⟨10.1002/mp.15609⟩. ⟨hal-03622534⟩
- George Dedes, Jannis Dickmann, Valentina Giacometti, Simon Rit, Nils Krah, et al.. The role of Monte Carlo simulation in understanding the performance of proton computed tomography. Zeitschrift fur Medizinische Physik, 2022, 32, pp.23-38. ⟨10.1016/j.zemedi.2020.06.006⟩. ⟨hal-02920133⟩
- Shreyasi Acharya, Dagmar Adamova, Alexander Adler, Jonatan Adolfsson, Gianluca Aglieri Rinella, et al.. Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at
= 5.02 and 13 TeV. Journal of High Energy Physics, 2022, 06, pp.015. ⟨10.1007/JHEP06(2022)015⟩. ⟨hal-03513264⟩
- Nils Krah, Denis Dauvergne, Jean Michel Létang, Simon Rit, Etienne Testa. Relative stopping power resolution in time-of-flight proton CT. Physics in Medicine and Biology, 2022, 67 (16), pp.165004. ⟨10.1088/1361-6560/ac7191⟩. ⟨hal-03677847⟩
- Paul Rocchi, Delphine Brichart-Vernos, François Lux, I. Morfin, Laurent David, et al.. A New Generation of Ultrasmall Nanoparticles Inducing Sensitization to Irradiation and Copper Depletion to Overcome Radioresistant and Invasive Cancers. Pharmaceutics, 2022, 14 (4), pp.814. ⟨10.3390/pharmaceutics14040814⟩. ⟨hal-03662053⟩
- Carmen Villagrasa, Hans Rabus, Giorgio Baiocco, Yann Perrot, Alessio Parisi, et al.. Intercomparison of micro- and nanodosimetry Monte Carlo simulations: An approach to assess the influence of different cross-sections for low-energy electrons on the dispersion of results. Radiation Measurements, 2022, 150, pp.106675. ⟨10.1016/j.radmeas.2021.106675⟩. ⟨hal-03508915⟩
- Marie-Thérèse Aloy, Jacqueline Sidi Boumedine, Agathe Deville, David Kryza, Arnaud Gauthier, et al.. Proof of Concept of the Radiosensitizing Effect of Gadolinium Oxide Nanoparticles in Cell Spheroids and a Tumor-Implanted Murine Model of Chondrosarcoma. International Journal of Nanomedicine, 2022, Volume 17, pp.6655-6673. ⟨10.2147/IJN.S390056⟩. ⟨hal-04112046⟩