L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
- Safa Louati. Formation différentielle des granules de stress dans les carcinomes épidermoïdes de la tête et du cou en réponse à l’irradiation photonique et par ions carbone. Cancer. Université Claude Bernard - Lyon I, 2023. Français. ⟨NNT : 2023LYO10075⟩. ⟨tel-05065542⟩
- Yungan Tao, Xu-Shan Sun, Yoann Pointreau, Christophe Le Tourneau, Christian Sire, et al.. Extended follow-up of a phase 2 trial of xevinapant plus chemoradiotherapy in high-risk locally advanced squamous cell carcinoma of the head and neck: a randomised clinical trial. European Journal of Cancer, 2023, 183, pp.24-37. ⟨10.1016/j.ejca.2022.12.015⟩. ⟨hal-04002440⟩
- David Barthelemy, Gaelle Lescuyer, Florence Geiguer, Emmanuel Grolleau, Arnaud Gauthier, et al.. Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays. Cancers, 2023, 15 (5), pp.1574. ⟨10.3390/cancers15051574⟩. ⟨hal-04382917⟩
- Dietrich Averbeck. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int.J.Mol.Sc., 2023, 24 (14), pp.11460. ⟨10.3390/ijms241411460⟩. ⟨hal-04178836⟩
- Anne-Sophie Wozny, Claire Rodriguez-Lafrasse. The ‘stealth-bomber’ paradigm for deciphering the tumour response to carbon-ion irradiation. British Journal of Cancer, 2023, 128, pp.1429-1438. ⟨10.1038/s41416-022-02117-6⟩. ⟨hal-03939645⟩
- Hassan Abdoul-Carime, Janina Kopyra. Reactions in CCl4 films deposited onto a cold gold substrate induced by charge transfer vs (0–5) eV free electrons. Chem.Phys.Lett., 2023, 810, pp.140182. ⟨10.1016/j.cplett.2022.140182⟩. ⟨hal-03865746⟩
- Wafa Bouleftour, Jean-Baptiste Guy, Pablo Moreno-Acosta, Claire Rodriguez Lafrasse, Paul Sargos, et al.. Challenges in radiobiology – technology duality as a key for a risk-free α/β ratio. Bulletin du Cancer, 2023, 110 (7-8), pp.768-775. ⟨10.1016/j.bulcan.2023.02.006⟩. ⟨hal-04170466⟩
- Janina Kopyra, Hassan Abdoul-Carime. Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons. Beilstein J.Nanotechnol., 2023, 14, pp.980-987. ⟨10.3762/bjnano.14.81⟩. ⟨hal-04260493⟩
- Nicolas Magné, Elisabeth Daguenet, Wafa Bouleftour, Laurine Conraux, Fabien Tinquaut, et al.. Impact of Radiation Therapy on Biological Parameters in Cancer Patients: Sub-analysis from the RIT Prospective Epidemiological Study. Cancer Investigation, 2023, 41 (2), pp.109-118. ⟨10.1080/07357907.2022.2139838⟩. ⟨hal-03865012⟩
- Brent Huisman, Enrique Muñoz, Denis Dauvergne, Jean Michel Létang, David Sarrut, et al.. Analytical modeling and Monte Carlo simulations of multi-parallel slit and knife-edge slit prompt gamma cameras. Physics in Medicine and Biology, 2023, 68 (11), pp.115009. ⟨10.1088/1361-6560/acd237⟩. ⟨hal-04100094⟩