L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Multiparticle correlation studies in pPb collisions at
8.16 TeV. Physical Review C, 2020, 101 (1), pp.014912. ⟨10.1103/PhysRevC.101.014912⟩. ⟨hal-02136296⟩
- Diogo Buarque Franzosi, Giacomo Cacciapaglia, Aldo Deandrea. Sigma-assisted low scale composite Goldstone–Higgs. European Physical Journal C: Particles and Fields, 2020, 80 (1), pp.28. ⟨10.1140/epjc/s10052-019-7572-z⟩. ⟨hal-01897260⟩
- A. Arbey, J. Auffinger, K.P. Hickerson, E.S. Jenssen. AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies. Computer Physics Communications, 2020, 248, pp.106982. ⟨10.1016/j.cpc.2019.106982⟩. ⟨hal-01839701⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. Observation of the Production of Three Massive Gauge Bosons at
=13 TeV. Physical Review Letters, 2020, 125 (15), pp.151802. ⟨10.1103/PhysRevLett.125.151802⟩. ⟨hal-02892966⟩
- W. Adam, T. Bergauer, E. Brondolin, M. Dragicevic, R. Frühwirth, et al.. Beam test performance of prototype silicon detectors for the Outer Tracker for the Phase-2 Upgrade of CMS. Journal of Instrumentation, 2020, 15 (03), pp.P03014. ⟨10.1088/1748-0221/15/03/P03014⟩. ⟨hal-02557789⟩
- Shreyasi Acharya, Dagmar Adamova, Souvik Priyam Adhya, Alexander Adler, Jonatan Adolfsson, et al.. Measurement of the (anti-)3He elliptic flow in Pb–Pb collisions at sNN=5.02TeV. Physics Letters B, 2020, 805, pp.135414. ⟨10.1016/j.physletb.2020.135414⟩. ⟨hal-02383328⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton-proton interactions. Journal of Instrumentation, 2020, 15 (10), pp.P10002. ⟨10.1088/1748-0221/15/10/P10002⟩. ⟨hal-02899276⟩
- Shreyasi Acharya, Dagmar Adamova, Alexander Adler, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of
and
mesons. Phys.Lett.B, 2020, 802, pp.135225. ⟨10.1016/j.physletb.2020.135225⟩. ⟨hal-02382010⟩
- Shreyasi Acharya, Dagmar Adamova, Alexander Adler, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at
= 2.76 TeV. Phys.Lett.B, 2020, 804, pp.135375. ⟨10.1016/j.physletb.2020.135375⟩. ⟨hal-02382012⟩
- Shreyasi Acharya, Dagmar Adamova, Alexander Adler, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Centrality and transverse momentum dependence of inclusive J/ψ production at midrapidity in Pb–Pb collisions at sNN=5.02 TeV. Phys.Lett.B, 2020, 805, pp.135434. ⟨10.1016/j.physletb.2020.135434⟩. ⟨hal-02383422⟩