L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.

Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.

Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.

Les activités se décomposent en trois axes de recherche:

L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.

L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.

L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.


8786 documents

  • Benoîte Méry, Jean-Baptiste Guy, Alexis Vallard, Sophie Espenel, Dominique Ardail, et al.. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. Journal of Cell Death, 2017, 10, ⟨10.1177/1179670717691251⟩. ⟨hal-01610108⟩
  • Jean-Baptiste Guy, Sophie Espenel, Alexis Vallard, Priscillia Battiston-Montagne, Anne-Sophie Wozny, et al.. Evaluation of the Cell Invasion and Migration Process: A Comparison of the Video Microscope-based Scratch Wound Assay and the Boyden Chamber Assay. Journal of visualized experiments : JoVE, 2017, 129, pp.e56337. ⟨10.3791/56337⟩. ⟨hal-01690773⟩
  • Benjamin P. Abbott, Rich Abbott, Thomas D. Abbott, Fausto Acernese, Kendall Ackley, et al.. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96 (2), pp.022001. ⟨10.1103/PhysRevD.96.022001⟩. ⟨hal-02999753⟩
  • F. Berthias, L. Feketeová, R. Della Negra, T. Dupasquier, R. Fillol, et al.. Measurement of the velocity of neutral fragments by the “correlated ion and neutral time of flight” method combined with “velocity-map imaging”. Review of Scientific Instruments, 2017, 88 (8), pp.083101. ⟨10.1063/1.4991828⟩. ⟨hal-01730078⟩
  • A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca, M. Son. Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC. Journal of High Energy Physics, 2017, 02, pp.115. ⟨10.1007/JHEP02(2017)115⟩. ⟨in2p3-01375658⟩
  • E. Armengaud, C. Augier, A.S. Barabash, J.W. Beeman, T.B. Bekker, et al.. Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. European Physical Journal C: Particles and Fields, 2017, 77 (11), pp.785. ⟨10.1140/epjc/s10052-017-5343-2⟩. ⟨hal-01669511⟩
  • J.-M. Richard, A. Valcarce, J. Vijande. String dynamics and metastability of fully-heavy tetraquarks. Physical Review D, 2017, 95, pp.054019. ⟨10.1103/PhysRevD.95.054019⟩. ⟨in2p3-01481875⟩
  • Dennis Zaritsky, Helene Courtois. A dynamics-free lower bound on the mass of our Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465 (3), pp.3724-3728. ⟨10.1093/mnras/stw2922⟩. ⟨hal-01582932⟩
  • J. Adam, Laurent Aphecetche, B. Audurier, A. Baldisseri, Guillaume Batigne, et al.. K^{*}(892)^{0} and \phi(1020) meson production at high transverse momentum in pp and Pb-Pb collisions at \sqrt{s_\mathrm{NN}} = 2.76 TeV. Physical Review C, 2017, 95, pp. 064606. ⟨10.1103/PhysRevC.95.064606⟩. ⟨in2p3-01454728⟩
  • S. Acharya, A. Baldisseri, H. Borel, J. Castillo Castellanos, J.L. Charvet, et al.. Energy dependence of forward-rapidity J/\psi and \psi(2S) production in pp collisions at the LHC. European Physical Journal C: Particles and Fields, 2017, 77, pp.392. ⟨10.1140/epjc/s10052-017-4940-4⟩. ⟨in2p3-01454729⟩