L’équipe PRISME est formée de physiciens, biochimistes, biologistes et radiothérapeutes. Nous sommes spécialisés dans des recherches pluridisciplinaires visant à développer, optimiser et contrôler les radiothérapies innovantes, qu’il s’agisse de l’hadronthérapie ou de thérapies faisant usage d’éléments radioactifs émetteurs d’ions ou de nanoparticules. Ces radiothérapies ont pour objectif d’améliorer le traitement de certain cancer en augmentant l’effet des radiations ionisantes dans la tumeur tout en minimisant leurs effets néfastes sur les tissus sains.
Notre approche multidisciplinaire vise à quantifier, comprendre et prédire l’effet des rayonnements ionisants sur le vivant depuis des processus induits à des temps extrêmement courts (attoseconde) à de petites échelles (noyau atomique) jusqu’aux conséquences à long terme (années) à l’échelle du patient.
Nous concevons et réalisons donc des expériences d’irradiation sur des cibles allant de la molécule ou la cellule aux petits animaux, en passant par des prélèvements issus de patients (tumeur, sang). Ces expériences nourrissent une partie importante de nos activité qui consiste à modéliser les effets des rayonnements sur le vivant.
Une des techniques innovantes de radiothérapie est l’hadronthérapie, constitue à envoyer
un faisceau d’ions sur les tumeurs pour les détruire. Nous travaillons, notamment à l’aide de simulations, de traitement des données et de prédictions, à améliorer ces systèmes en ayant un contrôle en ligne sur l’irradiation grâce à des détecteurs dédiés. Ces outils ont également des applications en imagerie.
Les activités se décomposent en trois axes de recherche:
L’axe 1 vise à développer des simulations et des détecteurs pour contrôler l’irradiation du patient en détectant les particules émises lors d’un traitement par hadronthérapie. Ces développements offrent également des perspectives d’application dans le domaine de l’imagerie de diagnostic.
L’axe 2 ce concentre sur le développement des modèles et des simulations multi-échelles pour décrire et prédire les processus physiques, chimiques et biologiques induits par irradiation. Il élabore également des moyens d’irradiation et de contrôle dosimétrique pour la mesure des effets radiobiologiques.
L’axe 3 quantifie par l’expérience les effets induits par les irradiations avec des systèmes moléculaires, cellulaires, multicellulaires, in-vitro ou in-vivo. Il s’intéresse aux spécificités des radiothérapies innovantes et à la personnalisation des soins.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- Janina Kopyra, Paulina Wierzbicka, Adrian Tulwin, Guillaume Thiam, Ilko Bald, et al.. Experimental and Theoretical Studies of Dissociative Electron Attachment to Metabolites Oxaloacetic and Citric Acids. Int.J.Mol.Sci., 2021, 22 (14), pp.7676. ⟨10.3390/ijms22147676⟩. ⟨hal-03323228⟩
- A. Fumagalli, A. Saro, S. Borgani, T. Castro, M. Costanzi, et al.. Euclid : Effects of sample covariance on the number counts of galaxy clusters. Astronomy & Astrophysics - A&A, 2021, 652, pp.A21. ⟨10.1051/0004-6361/202140592⟩. ⟨hal-03210469⟩
- Dany Davesne, Alessandro Pastore, Jesus Navarro. Linear response theory with finite-range interactions. Progress in Particle and Nuclear Physics, 2021, 120, pp.103870. ⟨10.1016/j.ppnp.2021.103870⟩. ⟨hal-03047570⟩
- S. Mariazzi, R. Caravita, C. Zimmer, B. Rienäcker, A. Camper, et al.. High-yield thermalized positronium at room temperature emitted by morphologically tuned nanochanneled silicon targets. J.Phys.B, 2021, 54 (8), pp.085004. ⟨10.1088/1361-6455/abf6b6⟩. ⟨hal-03229376⟩
- J. Dobaczewski, P. Bączyk, P. Becker, M. Bender, K. Bennaceur, et al.. Solution of universal nonrelativistic nuclear DFT equations in the Cartesian deformed harmonic-oscillator basis. (IX) HFODD (v3.06h): a new version of the program. Journal of Physics G: Nuclear and Particle Physics, 2021, 48 (10), pp.102001. ⟨10.1088/1361-6471/ac0a82⟩. ⟨hal-03217611⟩
- Shreyasi Acharya, Dagmar Adamova, Alexander Adler, Jonatan Adolfsson, Gianluca Aglieri Rinella, et al.. First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV. Phys.Lett.B, 2021, 820, pp.136481. ⟨10.1016/j.physletb.2021.136481⟩. ⟨hal-03122211⟩
- Elise Rowinski, Nicolas Magné, Jérôme Fayette, Elisabeth Daguenet, Séverine Racadot, et al.. Radioresistance and genomic alterations in head and neck squamous cell cancer: Sub‐analysis of the ProfiLER protocol. Head & Neck, 2021, 43 (12), pp.3899-3910. ⟨10.1002/hed.26891⟩. ⟨hal-03461669⟩
- X. Liu, B. Cederwall, C. Qi, R.A. Wyss, Ö. Aktas, et al.. Evidence for enhanced neutron-proton correlations from the level structure of the
nucleus
. Physical Review C, 2021, 104 (2), pp.L021302. ⟨10.1103/PhysRevC.104.L021302⟩. ⟨hal-03335724⟩ - Sébastien Curtoni, Marie-Laure Gallin-Martel, Latifa Abbassi, Alexandre Bes, Germain Bosson, et al.. Performance of CVD diamond detectors for single ion beam-tagging applications in hadrontherapy monitoring. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015, pp.165757. ⟨10.1016/j.nima.2021.165757⟩. ⟨hal-03227464⟩
- Janina Kopyra, Franck Rabilloud, Paulina Wierzbicka, Hassan Abdoul-Carime. Energy-Selective Decomposition of Organometallic Compounds by Slow Electrons: The Case of Chloro(dimethyl sulfide)gold(I). Journal of Physical Chemistry A, 2021, 125 (4), pp.966-972. ⟨10.1021/acs.jpca.0c09988⟩. ⟨hal-03148189⟩

