The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.
Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.
One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.
The activities can be divided into three research areas:
Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.
Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.
Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
- I. Tews, J. Margueron, S. Reddy. Confronting gravitational-wave observations with modern nuclear physics constraints. The European physical journal. A, Hadrons and Nuclei, 2019, 55 (6), pp.97. ⟨10.1140/epja/i2019-12774-6⟩. ⟨hal-02016890⟩
- Thomas Carreau, Francesca Gulminelli, Jérôme Margueron. Bayesian analysis of the crust-core transition with a compressible liquid-drop model. The European physical journal. A, Hadrons and Nuclei, 2019, 55 (10), pp.188. ⟨10.1140/epja/i2019-12884-1⟩. ⟨hal-02058549⟩
- Linda Feketeová, Paul Bertier, Thibaud Salbaing, Toshiyuki Azuma, Florent Calvo, et al.. Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation. Proc.Nat.Acad.Sci., 2019, pp.201911136. ⟨10.1073/pnas.1911136116⟩. ⟨hal-02340285⟩
- Jia Jie Li, Wen Hui Long, Jerome Margueron, Nguyen van Giai.
Si: An atypical nucleus?. Physics Letters B, 2019, 788, pp.192-197. ⟨10.1016/j.physletb.2018.11.034⟩. ⟨hal-01861952⟩
- Abdelhak Djouadi, John Ellis, Andrey Popov, Jérémie Quevillon. Interference effects in
production at the LHC as a window on new physics. Journal of High Energy Physics, 2019, 03, pp.119. ⟨10.1007/JHEP03(2019)119⟩. ⟨hal-01999716⟩
- Simone Ferraro, Michael J. Wilson, Muntazir Abidi, David Alonso, Behzad Ansarinejad, et al.. Astro2020 Science White Paper: Inflation and Dark Energy from Spectroscopy at
. Bull.Am.Astron.Soc., 2019, 51 (3), pp.72. ⟨hal-02116530⟩
- Dagmar Adamova, Souvik Priyam Adhya, Alexander Adler, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Inclusive J/ψ production at mid-rapidity in pp collisions at
= 5.02 TeV. Journal of High Energy Physics, 2019, 10, pp.084. ⟨10.1007/JHEP10(2019)084⟩. ⟨hal-02148250⟩
- Shreyasi Acharya, Dagmar Adamova, Souvik Priyam Adhya, Alexander Adler, Jonatan Adolfsson, et al.. Study of the
-
interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC. Physics Letters B, 2019, 797, pp.134822. ⟨10.1016/j.physletb.2019.134822⟩. ⟨hal-02148247⟩
- Shreyasi Acharya, Dagmar Adamova, Souvik Priyam Adhya, Alexander Adler, Jonatan Adolfsson, et al.. Measurement of prompt D
, D
, D
, and
production in p–Pb collisions at
= 5.02 TeV. Journal of High Energy Physics, 2019, 12, pp.092. ⟨10.1007/JHEP12(2019)092⟩. ⟨hal-02166465⟩
- K. Wrzosek-Lipska, K. Rezynkina, N. Bree, M. Zielińska, L.P. Gaffney, et al.. Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of
Hg,
Hg,
Hg and
Hg. The European physical journal. A, Hadrons and Nuclei, 2019, 55 (8), pp.130. ⟨10.1140/epja/i2019-12815-2⟩. ⟨hal-02277788⟩