The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.


Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480

Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
8785 documents

  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Measurement of the top quark mass in the all-jets final state at \sqrt{s} = 13 TeV and combination with the lepton+jets channel. Eur.Phys.J.C, 2019, 79 (4), pp.313. ⟨10.1140/epjc/s10052-019-6788-2⟩. ⟨hal-01982957⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for \mathrm{t}\overline{\mathrm{t}}\mathrm{H} production in the \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} decay channel with leptonic \mathrm{t}\overline{\mathrm{t}} decays in proton-proton collisions at \sqrt{s}=13 TeV. JHEP, 2019, 03, pp.026. ⟨10.1007/JHEP03(2019)026⟩. ⟨hal-01774097⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two \tau leptons and two jets in proton-proton collisions at \sqrt{s} = 13 TeV. JHEP, 2019, 03, pp.170. ⟨10.1007/JHEP03(2019)170⟩. ⟨hal-01937639⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at \sqrt{s}= 13 TeV. JHEP, 2019, 08, pp.150. ⟨10.1007/JHEP08(2019)150⟩. ⟨hal-02160622⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. Search for the production of W^\pmW^\pmW^\mp events at \sqrt{s} = 13 TeV. Phys.Rev.D, 2019, 100 (1), pp.012004. ⟨10.1103/PhysRevD.100.012004⟩. ⟨hal-02144348⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Search for supersymmetry in events with a photon, a lepton, and missing transverse momentum in proton-proton collisions at \sqrt{s} = 13 TeV. JHEP, 2019, 01, pp.154. ⟨10.1007/JHEP01(2019)154⟩. ⟨hal-01965352⟩
  • N. Baillot d'Etivaux, Sebastien Guillot, Jérôme Margueron, Natalie Webb, Márcio Catelan, et al.. New constraints on the nuclear equation of state from the thermal emission of neutron stars in quiescent low-mass X-ray binaries. The Astrophysical Journal, 2019, 887 (1), pp.48. ⟨10.3847/1538-4357/ab4f6c⟩. ⟨hal-02144167⟩
  • R. Graziani, H.M. Courtois, G Lavaux, Y. Hoffman, R.B. Tully, et al.. The peculiar velocity field up to z \sim 0.05 by forward-modelling Cosmicflows-3 data. Monthly Notices of the Royal Astronomical Society, 2019, 488 (4), pp.5438-5451. ⟨10.1093/mnras/stz078⟩. ⟨hal-01990691⟩
  • Christoph Charles. Abelian 2+1D Loop Quantum Gravity Coupled to a Scalar Field. Gen.Rel.Grav., 2019, 51 (3), pp.48. ⟨10.1007/s10714-019-2532-3⟩. ⟨hal-01871705⟩
  • M. Rigault, J.D. Neill, N. Blagorodnova, A. Dugas, M. Feeney, et al.. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astronomy & Astrophysics - A&A, 2019, 627, pp.A115. ⟨10.1051/0004-6361/201935344⟩. ⟨hal-02268432⟩