The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.


Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480

Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
8785 documents

  • G. Muggiolu, S. Libert, B. Treillard, G. Alfonse, P. Philouze, et al.. PO-1929 Identification of DNA repair-based biomarkers related to treatment outcome in head and neck cancers. ESTRO, Aug 2021, Madrid, Spain. pp.S1643-S1644, ⟨10.1016/s0167-8140(21)08380-8⟩. ⟨hal-03450014⟩
  • Anne-Sophie Wozny, Arnaud Gauthier, Gersende Alphonse, Céline Malésys, Virginie Varoclier, et al.. Involvement of HIF-1α in the Detection, Signaling, and Repair of DNA Double-Strand Breaks after Photon and Carbon-Ion Irradiation. Cancers, 2021, 13 (15), pp.3833. ⟨10.3390/cancers13153833⟩. ⟨hal-03326508⟩
  • Shahram Vatani. UV Completion of Composite Higgs Models. Nuclear Theory [nucl-th]. Université de Lyon, 2021. English. ⟨NNT : 2021LYSE1155⟩. ⟨tel-03497325⟩
  • T. Salagnac, J. Billard, J. Colas, D. Chaize, M. de Jesus, et al.. Optimization and performance of the CryoCube detector for the future RICOCHET low-energy neutrino experiment. 19th International Workshop on Low Temperature Detectors, Jul 2021, Online Conference, United States. pp.398-406, ⟨10.1007/s10909-023-02960-8⟩. ⟨hal-03472044⟩
  • C. Augier, G. Beaulieu, V. Belov, L. Berge, J. Billard, et al.. Ricochet Progress and Status. 19th International Workshop on Low Temperature Detectors, Jul 2021, On Line, United States. pp.127-137, ⟨10.1007/s10909-023-02971-5⟩. ⟨hal-03454410⟩
  • Jean-Baptiste Guy, Sophie Espenel, Safa Louati, Arnaud Gauthier, Max-Adrien Garcia, et al.. Combining radiation to EGFR and Bcl-2 blockade: a new approach to target cancer stem cells in head and neck squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2021, 147 (7), pp.1905-1916. ⟨10.1007/s00432-021-03593-8⟩. ⟨hal-03258241⟩
  • Alex Fontana, Richard Pedurand, Vincent Dolique, Ghaouti Hansali, Ludovic Bellon. Thermal noise of a cryo-cooled silicon cantilever locally heated up to its melting point. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2021, 103, pp.062125. ⟨10.1103/PhysRevE.103.062125⟩. ⟨ensl-03117929v2⟩
  • Jayde Livingstone, Denis Dauvergne, A. Etxebeste, Mattia Fontana, Marie-Laure Gallin-Martel, et al.. Influence of sub-nanosecond time of flight resolution for online range verification in proton therapy using the line-cone reconstruction in Compton imaging. Physics in Medicine and Biology, 2021, 66, pp.125012. ⟨10.1088/1361-6560/ac03cb⟩. ⟨hal-03257804⟩
  • Franck Rabilloud, Janina Kopyra, Hassan Abdoul-Carime. Fragmentation of Nickel(II) and Cobalt(II) Bis(acetylacetonate) Complexes Induced by Slow (<10 eV) Electrons. Inorganic Chemistry, 2021, 60 (11), pp.8154-8163. ⟨10.1021/acs.inorgchem.1c00795⟩. ⟨hal-03281474⟩
  • Raphaëlle Demeyer, Jérôme Margueron. Comment des pédagogies alternatives peuvent aider à la réussite des étudiants de physique du 1 er cycle universitaire. Reflets de la Physique, 2021, 69, pp.34-38. ⟨10.1051/refdp/202169034⟩. ⟨in2p3-03450405⟩