The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.


Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480

Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
8785 documents

  • A. Phipps, A. Juillard, B. Sadoulet, B. Serfass, Y. Jin. A HEMT-Based Cryogenic Charge Amplifier with sub-100 eVee Ionization Resolution for Massive Semiconductor Dark Matter Detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940, pp.181-184. ⟨10.1016/j.nima.2019.06.022⟩. ⟨hal-02171520⟩
  • Peng Wang, Quan Guo, Noam I. Libeskind, Elmo Tempel, Chengliang Wei, et al.. The shape alignment of satellite galaxies in Local Group-like pairs from the SDSS. Monthly Notices of the Royal Astronomical Society, 2019, 484 (3), pp.4325-4336. ⟨10.1093/mnras/stz285⟩. ⟨hal-02080607⟩
  • Alexandra Dupuy, Helene M. Courtois, Florent Dupont, Florence Denis, Romain Graziani, et al.. Partitioning the universe into gravitational basins using the cosmic velocity field. Monthly Notices of the Royal Astronomical Society, 2019, 489 (1), pp.L1-L6. ⟨10.1093/mnrasl/slz115⟩. ⟨hal-02279100⟩
  • Weiguang Cui, Alexander Knebe, Noam I. Libeskind, Susana Planelles, Xiaohu Yang, et al.. The large-scale environment from cosmological simulations II: The redshift evolution and distributions of baryons. Monthly Notices of the Royal Astronomical Society, 2019, 485 (2), pp.2367-2379. ⟨10.1093/mnras/stz565⟩. ⟨hal-02089632⟩
  • S. Biswas, A. Lemasson, M. Rejmund, A. Navin, Y.H. Kim, et al.. Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich ^{122-131}Sb_{51} isotopes. Phys.Rev.C, 2019, 99 (6), pp.064302. ⟨10.1103/physrevc.99.064302⟩. ⟨hal-02154730⟩
  • S. Taubenberger, A. Floers, C. Vogl, M. Kromer, J. Spyromilio, et al.. SN 2012dn from early to late times: 09dc-like supernovae reassessed. Mon.Not.Roy.Astron.Soc., 2019, 488 (4), pp.5473-5488. ⟨10.1093/mnras/stz1977⟩. ⟨hal-02279097⟩
  • Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asilar, et al.. Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at \sqrt{s}= 13 TeV. European Physical Journal C: Particles and Fields, 2019, 79 (9), pp.773. ⟨10.1140/epjc/s10052-019-7276-4⟩. ⟨hal-02051550⟩
  • A. Arbey, J.-F. Coupechoux. Cosmological scalar fields and Big-Bang nucleosynthesis. JCAP, 2019, 11, pp.038. ⟨10.1088/1475-7516/2019/11/038⟩. ⟨hal-02223019⟩
  • Young-Lo Kim, Yijung Kang, Young-Wook Lee. Environmental Dependence of Type Ia Supernova Luminosities from the YONSEI Supernova Catalog. J.Korean Astron.Soc., 2019, 52 (5), pp.181-205. ⟨10.5303/JKAS.2019.52.5.181⟩. ⟨hal-02309059⟩
  • W. Ryssens, M. Bender, P.H. Heenen. Iterative approaches to the self-consistent nuclear energy density functional problem: Heavy ball dynamics and potential preconditioning. Eur.Phys.J.A, 2019, 55 (6), pp.93. ⟨10.1140/epja/i2019-12766-6⟩. ⟨hal-01975264⟩