The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.

8786 documents

  • P. Achard, O. Adriani, M. Aguilar-Benitez, J. Alcaraz, G. Alemanni, et al.. Studies of hadronic event structure in e+e- annihilation from 30 GeV to 209 GeV with the L3 detector. Physics Reports, 2004, 399, pp.71-174. ⟨in2p3-00023200⟩
  • M. Bajard, J.M. de Conto, J. Remillieux. Status of the "ETOILE" project for a French Hadrontherapy Centre. Radiotherapy & Oncology, 2004, 73 Suppl. 2, pp.S211-S215. ⟨10.1016/S0167-8140(04)80050-1⟩. ⟨in2p3-00024563⟩
  • Nicolas Bererd. Effets d'irradiation sur l'oxydation du zirconium et la diffusion de l'uranium dans la zircone. Physique [physics]. Université Claude Bernard - Lyon I, 2003. Français. ⟨NNT : ⟩. ⟨tel-00005944⟩
  • Jérôme Coss. Etalonnage de l'énergie des jets dans l'expérience D0. Physique des Hautes Energies - Expérience [hep-ex]. Université Claude Bernard - Lyon I, 2003. Français. ⟨NNT : ⟩. ⟨tel-00008636⟩
  • F. Acernese, P. Amico, N. Arnaud, C. Arnault, D. Babusci, et al.. Status of VIRGO. Gravitational Wave Data Analysis Workshop 7, Dec 2003, Kyoto, Japan. pp.S609-S616. ⟨in2p3-00021574⟩
  • G.-S. Muanza. Hemispherical events: a new signature for SUSY searches at hadron colliders. Reunion Europeenne de l'Euro-GDR SUSY, Dec 2003, Orsay, France. ⟨in2p3-00020289⟩
  • Y. Copin. La spectrographie integrale de champ. Programme National Galaxies, Dec 2003, Paris, France. ⟨in2p3-00020367⟩
  • N. Millard-Pinard. Du couplage des techniques d'analyse par faisceaux d'ions et des méthodes de caractérisation physico-chimique à l'étude des effets d'irradiation sur le comportement des matériaux. Physique [physics]. Université Claude Bernard - Lyon I, 2003. ⟨tel-00007297⟩
  • V. Sanglard. Detection directe de la matiere noire avec l'experience EDELWEISS. Journees Jeunes Chercheurs 2003, Nov 2003, Aussois, France. ⟨in2p3-00020217⟩
  • Dany Davesne. Systèmes de particules en interaction : phénomènes à l'équilibre, hors équilibre et approche non perturbative. Physique mathématique [math-ph]. Université Claude Bernard - Lyon I, 2003. ⟨tel-00004366⟩