The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.
Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.
One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.
The activities can be divided into three research areas:
Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.
Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.
Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Thomas Bergauer, et al.. W
W
boson pair production in proton-proton collisions at
13 TeV. Phys.Rev.D, 2020, 102 (9), pp.092001. ⟨10.1103/PhysRevD.102.092001⟩. ⟨hal-02946191⟩
- Hubert Hansen, Rainer Stiele, Pedro Costa. Quark and Polyakov-loop correlations in effective models at zero and nonvanishing density. Physical Review D, 2020, 101 (9), pp.094001. ⟨10.1103/PhysRevD.101.094001⟩. ⟨hal-02137150⟩
- Anne-Sophie Wozny, Gersende Alphonse, Audrey Cassard, CĂ©line MalĂ©sys, Safa Louati, et al.. Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Scientific Reports, 2020, 10 (1), pp.21357. ⟨10.1038/s41598-020-78354-7⟩. ⟨hal-03070648⟩
- H. Almazán, L. Bernard, A. Blanchet, A. Bonhomme, C. Buck, et al.. Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data. Phys.Rev.D, 2020, 102 (5), pp.052002. ⟨10.1103/PhysRevD.102.052002⟩. ⟨hal-02423748⟩
- B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, et al.. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Phys.Rev.D, 2020, 101 (8), pp.084002. ⟨10.1103/PhysRevD.101.084002⟩. ⟨hal-02302999⟩
- Feriel Khellaf, Nils Krah, Jean-Michel LĂ©tang, Charles-Antoine Collins-Fekete, Simon Rit. A comparison of direct reconstruction algorithms in proton computed tomography. Physics in Medicine and Biology, 2020, 65 (10), pp.105010. ⟨10.1088/1361-6560/ab7d53⟩. ⟨hal-02502179⟩
- A. Etxebeste, D. Dauvergne, M. Fontana, J.M. LĂ©tang, G. Llosá, et al.. CCMod: a GATE module for Compton camera imaging simulation. Physics in Medicine and Biology, 2020, 65 (5), pp.055004. ⟨10.1088/1361-6560/ab6529⟩. ⟨hal-02497878⟩
- F. Poignant, A. Ipatov, O. Chakchir, P.J. Lartaud, É. Testa, et al.. Theoretical derivation and benchmarking of cross sections for low-energy electron transport in gold. The European Physical Journal Plus, 2020, 135 (4), pp.358. ⟨10.1140/epjp/s13360-020-00354-3⟩. ⟨hal-02550038⟩
- S. Acharya, Dagmar Adamova, Alexander Adler, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. (Anti-)deuteron production in pp collisions at
. Eur.Phys.J.C, 2020, 80 (9), pp.889. ⟨10.1140/epjc/s10052-020-8256-4⟩. ⟨hal-02518085⟩
- R. Avigo, O. Wieland, A. Bracco, F. Camera, F. Ameil, et al.. Low-lying electric dipole
-continuum for the unstable
Fe nuclei: Strength evolution with neutron number. Physics Letters B, 2020, 811, pp.135951. ⟨10.1016/j.physletb.2020.135951⟩. ⟨hal-03047536⟩