The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.


Warning: Undefined property: stdClass::$facet_counts in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480

Warning: Attempt to read property "facet_fields" on null in /var/www/html/wp-content/plugins/hal/wp-hal.php on line 480
8785 documents

  • Safa Louati, Anne-Sophie Wozny, Céline Malesys, Elisabeth Daguenet, Riad Ladjohounlou, et al.. Differential Formation of Stress Granules in Radiosensitive and Radioresistant Head and Neck Squamous Cell Carcinoma Cells. International Journal of Radiation Oncology, Biology, Physics, 2024, 118 (2), pp.485-497. ⟨10.1016/j.ijrobp.2023.08.045⟩. ⟨hal-04518869⟩
  • Mario Alcocer-Ávila, Victor Levrague, Rachel Delorme, Étienne Testa, Michaël Beuve. Biophysical modeling of low‐energy ion irradiations with NanOx. Medical Physics, 2024, 51 (12), pp.9358-9371. ⟨10.1002/mp.17407⟩. ⟨hal-04700855⟩
  • Jean Michel Létang, Oreste Allegrini, Etienne Testa. Prompt-gamma track-length estimator with time tagging from proton tracking. Physics in Medicine and Biology, 2024, 69 (11), pp.115052. ⟨10.1088/1361-6560/ad4a01⟩. ⟨hal-04572770⟩
  • Pierre Everaere, Denis Dauvergne, Marie-Laure Gallin-Martel, Joël Hérault, Ayoub Koudia, et al.. Prompt Gamma Energy Integration : a new method for online-range verification in proton therapy with pulsed-beams. Frontiers in Physics, 2024, 12, pp.1371015. ⟨10.3389/fphy.2024.1371015⟩. ⟨hal-04589792⟩
  • H Abdoul‐carime, B Lathuilière, P Nedelec, J Kopyra. Synthesis of Benzene and Phenol From the Irradiation of Benzonitrile: Water Ices by (<10 eV) Electrons: Application to the Planets and Meteorites Surface Chemistry. J.Geophys.Res.Planets, 2024, 129 (3), pp.e2023JE008151. ⟨10.1029/2023je008151⟩. ⟨hal-04521673⟩
  • H Abdoul-Carime, E..G F de Miranda, M.T. Do N Varella. Low-energy (0–9 eV) electron interaction with gas phase 1,3-dichlorobenzene: an experimental and theoretical study. Phys.Scripta, 2024, 99 (12), pp.125401. ⟨10.1088/1402-4896/ad8974⟩. ⟨hal-04779343⟩
  • Hassan Abdoul-Carime, Elena Lys, Jeanne Gipouloux, Franck Rabilloud. Experimental and Theoretical Investigations of the Fragmentation of Ethylenediamine Induced by Low-Energy (<10 eV) Electrons. Molecules, 2023, 29 (1), pp.191. ⟨10.3390/molecules29010191⟩. ⟨hal-04367571⟩
  • Victor Levrague, Mario Alcocer-Ávila, Sarah Otmani, Lydia Maigne, Michael Beuve, et al.. Parametric modeling study of intracellular radionuclide distribution impact in Targeted Alpha Therapy. Symposium on Molecular Radiotherapy Dosimetry: The future of theragnostics, EFOMP, Nov 2023, Athènes, Grèce, Greece. ⟨hal-04305428⟩
  • Judith Reindl, Ana Margarida Abrantes, Vidhula Ahire, Omid Azimzadeh, Sarah Baatout, et al.. Chapter 3. Molecular Radiation Biology. Springer nature. Radiobiology Textbook, Sarah Baatout, pp.83-189, 2023, 978-3-031-18809-1. ⟨10.1007/978-3-031-18810-7_3⟩. ⟨in2p3-04937597⟩
  • Emmanuel Grolleau, Julie Candiracci, Gaelle Lescuyer, David Barthelemy, Nazim Benzerdjeb, et al.. Circulating H3K27 Methylated Nucleosome Plasma Concentration: Synergistic Information with Circulating Tumor DNA Molecular Profiling. Biomolecules, 2023, 13 (8), pp.1255. ⟨10.3390/biom13081255⟩. ⟨hal-04549560⟩