The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.

476 documents

  • Nils Krah, Vincenzo Patera, Simon Rit, Angelo Schiavi, Ilaria Rinaldi. Regularised patient-specific stopping power calibration for proton therapy planning based on proton radiographic images. Physics in Medicine and Biology, 2019, 64, pp.065008. ⟨10.1088/1361-6560/ab03db⟩. ⟨hal-02023861⟩
  • Feriel Khellaf, Nils Krah, Ilaria Rinaldi, Jean-Michel Létang, Simon Rit. Effects of transverse heterogeneities on the most likely path of protons. Physics in Medicine and Biology, 2019, 64, pp.065003. ⟨10.1088/1361-6560/ab02a8⟩. ⟨hal-02023848⟩
  • Chen-Hui Chan, Floriane Poignant, Michael Beuve, Elise Dumont, David Loffreda. A Water Solvation Shell Can Transform Gold Metastable Nanoparticles in the Fluxional Regime. Journal of Physical Chemistry Letters, 2019, 10, pp.1092-1098. ⟨10.1021/acs.jpclett.8b03822⟩. ⟨hal-02057656⟩
  • Guillaume Landry, Fabian Dörringer, Salim Si-Mohamed, Philippe Douek, Juan F P J Abascal, et al.. Technical Note: Relative proton stopping power estimation from virtual mono-energetic images reconstructed from dual-layer computed tomography. Medical Physics : The international journal of medical physics research and practice, 2019, 46 (4), pp.1821-1828. ⟨10.1002/mp.13404⟩. ⟨hal-02009475⟩
  • Jessica Garcia, David Barthelemy, Florence Geiguer, Julie Ballandier, Kathryn Li, et al.. Semi-automatic PD-L1 Characterization and Enumeration of Circulating Tumor Cells from Non-small Cell Lung Cancer Patients by Immunofluorescence. Journal of visualized experiments : JoVE, 2019, 150, pp.e59873. ⟨10.3791/59873⟩. ⟨hal-03133165⟩
  • David Sarrut, Nils Krah, Jean-Michel Létang. Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations. Physics in Medicine and Biology, 2019, 64 (21), ⟨10.1088/1361-6560/ab3fc1⟩. ⟨hal-02276243⟩
  • Mira Maalouf, Adeline Granzotto, Clément Devic, Larry Bodgi, Mélanie Ferlazzo, et al.. Influence of Linear Energy Transfer on the Nucleo-shuttling of the ATM Protein: A Novel Biological Interpretation Relevant for Particles and Radiation. International Journal of Radiation Oncology, Biology, Physics, 2019, 103 (3), pp.709-718. ⟨10.1016/j.ijrobp.2018.10.011⟩. ⟨hal-02081379⟩
  • Emmanuelle Couty, Alexis Vallard, Sandrine Sotton, Sarra Ouni, Max-Adrien Garcia, et al.. Safety assessment of anticancer drugs in association with radiotherapy in metastatic malignant melanoma: a real-life report. Cancer Chemother.Pharmacol., 2019, 83 (5), pp.881-892. ⟨10.1007/s00280-019-03806-5⟩. ⟨hal-02557733⟩
  • François Lux, Vu Long Tran, Eloise Thomas, Sandrine Dufort, Fabien Rossetti, et al.. AGuIX® from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 2019, 92 (1093), pp.20180365. ⟨10.1259/bjr.20180365⟩. ⟨hal-01935540⟩
  • W. B. Li, A. Belchior, Michael Beuve, M.U. Bug, S. Di Maria, et al.. Comparison of Monte Carlo simulated physical radiation quantities for gold nanoparticles irradiated by x-rays and assessment of potential indication for targeted breast cancer treatment. Third Geant4 International User Conference, Oct 2018, Bordeaux, France. ⟨hal-02050756⟩