The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.

Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.

One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.

The activities can be divided into three research areas:

Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.

Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.

Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.

8787 documents

  • Benoîte Méry, Jean-Baptiste Guy, Alexis Vallard, Sophie Espenel, Dominique Ardail, et al.. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. Journal of Cell Death, 2017, 10, ⟨10.1177/1179670717691251⟩. ⟨hal-01610108⟩
  • J. Adam, Laurent Aphecetche, B. Audurier, A. Baldisseri, Guillaume Batigne, et al.. J/\psi suppression at forward rapidity in Pb-Pb collisions at \mathbf{\sqrt{s_{{\rm NN}}} = 5.02} TeV. Physics Letters B, 2017, 766, pp.212-224. ⟨10.1016/j.physletb.2016.12.064⟩. ⟨in2p3-01338145⟩
  • Shreyasi Acharya, Jaroslav Adam, Dagmar Adamova, Jonatan Adolfsson, Madan Mohan Aggarwal, et al.. Kaon femtoscopy in Pb-Pb collisions at \sqrt{s_{\rm{NN}}} = 2.76 TeV. Physical Review C, 2017, 96 (6), pp.064613. ⟨10.1103/PhysRevC.96.064613⟩. ⟨hal-01703863⟩
  • J. Adam, Laurent Aphecetche, B. Audurier, A. Baldisseri, Guillaume Batigne, et al.. W and Z boson production in p-Pb collisions at \sqrt{s_{\rm NN}} = 5.02 TeV. Journal of High Energy Physics, 2017, 02 (2), pp.77. ⟨10.1007/JHEP02(2017)077⟩. ⟨in2p3-01396830⟩
  • M. Jentschel, A. Blanc, G. de France, U. Köster, S. Leoni, et al.. EXILL—a high-efficiency, high-resolution setup for \gamma-spectroscopy at an intense cold neutron beam facility. Journal of Instrumentation, 2017, 12 (11), pp.P11003. ⟨10.1088/1748-0221/12/11/P11003⟩. ⟨hal-01645812⟩
  • E. Armengaud, C. Augier, A.S. Barabash, J.W. Beeman, T.B. Bekker, et al.. Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. European Physical Journal C: Particles and Fields, 2017, 77 (11), pp.785. ⟨10.1140/epjc/s10052-017-5343-2⟩. ⟨hal-01669511⟩
  • Benjamin P. Abbott, Rich Abbott, Thomas D. Abbott, Fausto Acernese, Kendall Ackley, et al.. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Phys.Rev.D, 2017, 96 (2), pp.022001. ⟨10.1103/PhysRevD.96.022001⟩. ⟨hal-02999753⟩
  • S. Aghion, C. Amsler, T. Ariga, G. Bonomi, R.S. Brusa, et al.. Characterization of a transmission positron/positronium converter for antihydrogen production. Nucl.Instrum.Meth.B, 2017, 407, pp.55-66. ⟨10.1016/j.nimb.2017.05.059⟩. ⟨hal-01554901⟩
  • S. Lombardo, D. Küsters, M. Kowalski, G. Aldering, P. Antilogus, et al.. SCALA: In situ calibration for integral field spectrographs. Astronomy & Astrophysics - A&A, 2017, 607, pp.A113. ⟨10.1051/0004-6361/201731076⟩. ⟨hal-01768116⟩
  • D. Chatterjee, F. Gulminelli, Ad. R. Raduta, J. Margueron. Constraints on the nuclear equation of state from nuclear masses and radii in a Thomas-Fermi meta-modeling approach. Phys.Rev.C, 2017, 96 (6), pp.065805. ⟨10.1103/PhysRevC.96.065805⟩. ⟨hal-01703856⟩