The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.
Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.
One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.
The activities can be divided into three research areas:
Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.
Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.
Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
- Floriane Poignant, Caterina Monini, Étienne Testa, Michaël Beuve. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation. Medical Physics : The international journal of medical physics research and practice, 2020, 48 (4), pp.1874-1883. ⟨10.1002/mp.14576⟩. ⟨hal-03001810⟩
- S. Marcatili, J. Collot, S. Curtoni, D. Dauvergne, J.Y. Hostachy, et al.. Ultra-fast prompt gamma detection in single proton counting regime for range monitoring in particle therapy. Physics in Medicine and Biology, 2020, 65 (24), pp.245033. ⟨10.1088/1361-6560/ab7a6c⟩. ⟨hal-02467231⟩
- W. B. Li, A. Belchior, M. Beuve, Y. Z. Chen, S. Di Maria, et al.. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Physica Medica European Journal of Medical Physics, 2020, 69, pp.147-163. ⟨10.1016/j.ejmp.2019.12.011⟩. ⟨hal-02452613⟩
- S. Simonet, C. Rodriguez-Lafrasse, D. Béal, S. Gerbaud, C. Malesys, et al.. Gadolinium-based nanoparticles can overcome the radioresistance of head and neck squamous cell carcinoma through the induction of autophagy. Journal of Biomedical Nanotechnology, 2020, 16 (1), pp.111-124. ⟨10.1166/jbn.2020.2871⟩. ⟨hal-02476855⟩
- Janina Kopyra, Franck Rabilloud, Hassan Abdoul-Carime. Interaction of Slow Electrons with Thermally Evaporated Manganese(II) Acetylacetonate Complexes. J.Phys.Chem.A, 2020, 124 (11), pp.2186-2192. ⟨10.1021/acs.jpca.9b10119⟩. ⟨hal-02536182⟩
- Jan Gajewski, Angelo Schiavi, Nils Krah, Gloria Vilches-Freixas, Antoni Rucinski, et al.. Implementation of a Compact Spot-Scanning Proton Therapy System in a GPU Monte Carlo Code to Support Clinical Routine. Front.in Phys., 2020, 8, pp.578605. ⟨10.3389/fphy.2020.578605⟩. ⟨hal-03157090⟩
- Paulina Stasica, Jakub Baran, Carlos Granja, Nils Krah, Grzegorz Korcyl, et al.. A Simple Approach for Experimental Characterization and Validation of Proton Pencil Beam Profiles. Frontiers in Physics, 2020, 8, pp.346. ⟨10.3389/fphy.2020.00346⟩. ⟨hal-02999622⟩
- Fatmir Asllanaj, Ahmad Addoum. Simultaneous reconstruction of absorption, scattering and anisotropy factor distributions in quantitative photoacoustic tomography. Biomedical Physics & Engineering Express, 2020, 6 (4), pp.045010. ⟨10.1088/2057-1976/ab90a0⟩. ⟨hal-02870842⟩
- Elisabeth Daguenet, Jonathan Khalifa, Alain Tolédano, Delphine Borchiellini, Yoann Pointreau, et al.. To exploit the 5 ‘R’ of radiobiology and unleash the 3 ‘E’ of immunoediting: ‘RE’-inventing the radiotherapy-immunotherapy combination. Therap.Adv.Med.Oncol., 2020, 12, pp.175883592091344-2. ⟨10.1177/1758835920913445⟩. ⟨hal-02870835⟩
- Feriel Khellaf, Nils Krah, Jean-Michel Létang, Charles-Antoine Collins-Fekete, Simon Rit. A comparison of direct reconstruction algorithms in proton computed tomography. Physics in Medicine and Biology, 2020, 65 (10), pp.105010. ⟨10.1088/1361-6560/ab7d53⟩. ⟨hal-02502179⟩

