The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.
Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.
One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.
The activities can be divided into three research areas:
Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.
Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.
Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- CHERCHEURS NON-PERMANENTS / NON-PERMANENT RESEARCHERS:
- A. Fumagalli, A. Saro, S. Borgani, T. Castro, M. Costanzi, et al.. Euclid : Effects of sample covariance on the number counts of galaxy clusters. Astronomy & Astrophysics - A&A, 2021, 652, pp.A21. ⟨10.1051/0004-6361/202140592⟩. ⟨hal-03210469⟩
- A. Kerbizi, X. Artru, A. Martin. Production of vector mesons in the String+
model of polarized quark fragmentation. Physical Review D, 2021, 104 (11), pp.114038. ⟨10.1103/PhysRevD.104.114038⟩. ⟨hal-03355319⟩
- Viraj R. Karambelkar, Mansi M. Kasliwal, Kate Maguire, Shreya G. Anand, Igor Andreoni, et al.. Faintest of Them All: ZTF 21aaoryiz/SN 2021fcg—Discovery of an Extremely Low Luminosity Type Iax Supernova. The Astrophysical Journal Letters, 2021, 921 (1), pp.L6. ⟨10.3847/2041-8213/ac2e90⟩. ⟨hal-03405666⟩
- Alexandre Arbey, JĂ©rĂ©my Auffinger, Marc Geiller, Etera R. Livine, Francesco Sartini. Hawking radiation by spherically-symmetric static black holes for all spins. II. Numerical emission rates, analytical limits, and new constraints. Physical Review D, 2021, 104 (8), pp.084016. ⟨10.1103/PhysRevD.104.084016⟩. ⟨hal-03287550⟩
- Luis C.N. Santos, ClĂ©sio E. Mota, Franciele M. da Silva, Guilherme Grams, I.P. Lobo. Effects of modified dispersion relations on free Fermi gas: Equations of state and applications in astrophysics. Physics Letters B, 2021, 822, pp.136684. ⟨10.1016/j.physletb.2021.136684⟩. ⟨hal-03388134⟩
- Alexandre Arbey, JĂ©rĂ©my Auffinger, Pearl Sandick, Barmak Shams Es Haghi, Kuver Sinha. Precision calculation of dark radiation from spinning primordial black holes and early matter-dominated eras. Physical Review D, 2021, 103 (12), pp.123549. ⟨10.1103/PhysRevD.103.123549⟩. ⟨hal-03210331⟩
- Mamadou Soumboundou, Julien Dossou, Yossef Kalaga, Innocent Nkengurutse, Ibrahima Faye, et al.. Is Response to Genotoxic Stress Similar in Populations of African and European Ancestry? A Study of Dose-Response After in vitro Irradiation. Front.Genet., 2021, 12, pp.657999. ⟨10.3389/fgene.2021.657999⟩. ⟨hal-03472634⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Thomas Bergauer, Marko Dragicevic, et al.. Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at
13 TeV. JHEP, 2021, 04, pp.123. ⟨10.1007/JHEP04(2021)123⟩. ⟨hal-03108009⟩
- Maxime Jacquet, Sara Marcatili, Marie-Laure Gallin-Martel, Jean-Luc Bouly, Yannick Boursier, et al.. A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy. Physics in Medicine and Biology, 2021, 66 (13), pp.135003. ⟨10.1088/1361-6560/ac03ca⟩. ⟨hal-03319261⟩
- Elise Rowinski, Nicolas Magne, Wafa Bouleftour, Pablo Moreno-Acosta, Christelle de La Fourchadiere, et al.. Genetic Analysis in Anal and Cervical Cancer: Exploratory Findings About Radioresistance in the ProfiLER Database. Cancer Genomics and Proteomics, 2021, 18 (4), pp.515-520. ⟨10.21873/cgp.20276⟩. ⟨hal-03323257⟩