The PRISME team is composed of physicists, biochemists, biologists and radiotherapists. We specialize in multidisciplinary research aimed at developing, optimizing and controlling innovative radiotherapies, whether it be hadrontherapy or therapies using radioactive ion-emitting elements or nanoparticles. These radiotherapies aim to improve the treatment of certain cancers by increasing the effect of ionizing radiation in the tumor while minimizing its harmful effects on healthy tissues.
Our multidisciplinary approach aims to quantify, understand and predict the effect of ionizing radiation on living organisms from processes induced at extremely short times (attosecond) at small scales (atomic nucleus) to long-term consequences (years) at the patient level.
We therefore design and carry out irradiation experiments on targets ranging from molecules or cells to small animals and patient samples (tumor, blood). These experiments feed an important part of our activity which consists in modeling the effects of radiation on living organisms.
One of the innovative techniques of radiotherapy is hadrontherapy, which is to send
an ion beam on the tumors to destroy them. We are working, in particular using simulations, data processing and predictions, to improve these systems by having on-line control over irradiation using dedicated detectors. These tools also have applications in imaging.
The activities can be divided into three research areas:
Axis 1 aims to develop simulations and detectors to control patient irradiation by detecting the particles emitted during hadrontherapy treatment. These developments also offer application prospects in the field of diagnostic imaging.
Axis 2 focuses on the development of multi-scale models and simulations to describe and predict the physical, chemical and biological processes induced by irradiation. It also develops irradiation and dosimetric control means for the measurement of radiobiological effects.
Axis 3 quantifies by experiment the effects induced by irradiation with molecular, cellular, multicellular, in-vitro or in-vivo systems. It focuses on the specificities of innovative radiotherapies and the personalization of care.
NON-PERMANENTS:
- DOCTORANTS / DOCTORAL STUDENTS:
- Elise Rowinski, Nicolas Magne, Wafa Bouleftour, Pablo Moreno-Acosta, Christelle de La Fourchadiere, et al.. Genetic Analysis in Anal and Cervical Cancer: Exploratory Findings About Radioresistance in the ProfiLER Database. Cancer Genomics and Proteomics, 2021, 18 (4), pp.515-520. ⟨10.21873/cgp.20276⟩. ⟨hal-03323257⟩
- R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al.. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophys.J.Lett., 2021, 913 (1), pp.L7. ⟨10.3847/2041-8213/abe949⟩. ⟨hal-03010977⟩
- Viraj R. Karambelkar, Mansi M. Kasliwal, Kate Maguire, Shreya G. Anand, Igor Andreoni, et al.. Faintest of Them All: ZTF 21aaoryiz/SN 2021fcg—Discovery of an Extremely Low Luminosity Type Iax Supernova. Astrophys.J.Lett., 2021, 921 (1), pp.L6. ⟨10.3847/2041-8213/ac2e90⟩. ⟨hal-03405666⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Thomas Bergauer, Marko Dragicevic, et al.. Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at s=13Â TeV. Phys.Lett.B, 2021, 819, pp.136446. ⟨10.1016/j.physletb.2021.136446⟩. ⟨hal-03098875⟩
- Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Thomas Bergauer, Marko Dragicevic, et al.. Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at
13 TeV. JHEP, 2021, 04, pp.123. ⟨10.1007/JHEP04(2021)123⟩. ⟨hal-03108009⟩ - X. Liu, B. Cederwall, C. Qi, R.A. Wyss, Ă–. Aktas, et al.. Evidence for enhanced neutron-proton correlations from the level structure of the
nucleus
. Physical Review C, 2021, 104 (2), pp.L021302. ⟨10.1103/PhysRevC.104.L021302⟩. ⟨hal-03335724⟩ - SĂ©bastien Curtoni, Marie-Laure Gallin-Martel, Latifa Abbassi, Alexandre Bes, Germain Bosson, et al.. Performance of CVD diamond detectors for single ion beam-tagging applications in hadrontherapy monitoring. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1015, pp.165757. ⟨10.1016/j.nima.2021.165757⟩. ⟨hal-03227464⟩
- Janina Kopyra, Franck Rabilloud, Paulina Wierzbicka, Hassan Abdoul-Carime. Energy-Selective Decomposition of Organometallic Compounds by Slow Electrons: The Case of Chloro(dimethyl sulfide)gold(I). Journal of Physical Chemistry A, 2021, 125 (4), pp.966-972. ⟨10.1021/acs.jpca.0c09988⟩. ⟨hal-03148189⟩
- David Sarrut, Mateusz BaĹ‚a, Manuel Bardiès, Julien Bert, Maxime Chauvin, et al.. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Physics in Medicine and Biology, 2021, 66 (10), pp.10TR03. ⟨10.1088/1361-6560/abf276⟩. ⟨hal-03229364⟩
- VerĂłnica BelĂ©n Tessaro, Benoit Gervais, Floriane Poignant, Michael Beuve, Mariel Elisa Galassi. Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values. Phys.Medica, 2021, 88, pp.71-85. ⟨10.1016/j.ejmp.2021.06.006⟩. ⟨hal-03335777⟩

